Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Mol Life Sci ; 81(1): 186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632116

RESUMO

Pathogenic variants in SLC6A8, the gene which encodes creatine transporter SLC6A8, prevent creatine uptake in the brain and result in a variable degree of intellectual disability, behavioral disorders (e.g., autism spectrum disorder), epilepsy, and severe speech and language delay. There are no treatments to improve neurodevelopmental outcomes for creatine transporter deficiency (CTD). In this spotlight, we summarize recent advances in innovative molecules to treat CTD, with a focus on dodecyl creatine ester, the most promising drug candidate.


Assuntos
Transtorno do Espectro Autista , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Humanos , Creatina/genética , Creatina/uso terapêutico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/tratamento farmacológico , Retardo Mental Ligado ao Cromossomo X/genética
2.
Protein Sci ; 33(1): e4842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032325

RESUMO

In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.


Assuntos
Creatina , Proteínas de Membrana Transportadoras , Humanos , Creatina/genética , Creatina/metabolismo , Mutagênese , Mutação
3.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126335

RESUMO

The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.


Assuntos
Creatina , Deficiência Intelectual , Masculino , Humanos , Camundongos , Animais , Creatina/genética , Deficiência Intelectual/genética , Sistema Nervoso Central , Neurotransmissores , Eletrofisiologia
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1397-1403, 2023 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-37906149

RESUMO

OBJECTIVE: To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS). METHODS: A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy. RESULTS: The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant. CONCLUSION: The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Creatina , Humanos , Masculino , Encéfalo , Creatina/genética , Heterozigoto , Mães , Proteínas do Tecido Nervoso , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Lactente
5.
Elife ; 122023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37830910

RESUMO

Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the SLC6A8 gene. The impaired creatine uptake in the brain results in intellectual disability, behavioral disorders, language delay, and seizures. In this work, we generated human brain organoids from induced pluripotent stem cells of healthy subjects and CTD patients. Brain organoids from CTD donors had reduced creatine uptake compared with those from healthy donors. The expression of neural progenitor cell markers SOX2 and PAX6 was reduced in CTD-derived organoids, while GSK3ß, a key regulator of neurogenesis, was up-regulated. Shotgun proteomics combined with integrative bioinformatic and statistical analysis identified changes in the abundance of proteins associated with intellectual disability, epilepsy, and autism. Re-establishment of the expression of a functional SLC6A8 in CTD-derived organoids restored creatine uptake and normalized the expression of SOX2, GSK3ß, and other key proteins associated with clinical features of CTD patients. Our brain organoid model opens new avenues for further characterizing the CTD pathophysiology and supports the concept that reinstating creatine levels in patients with CTD could result in therapeutic efficacy.


Assuntos
Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Creatina/genética , Creatina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
6.
Biol Reprod ; 109(6): 839-850, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602666

RESUMO

Creatine metabolism likely contributes to energy homeostasis in the human uterus, but whether this organ synthesizes creatine and whether creatine metabolism is adjusted throughout the menstrual cycle and with pregnancy are largely unknown. This study determined endometrial protein expression of creatine-synthesizing enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), creatine kinase (CKBB), and the creatine transporter (SLC6A8) throughout the menstrual cycle in fertile and primary infertile women. It also characterized creatine metabolism at term pregnancy, measuring aspects of creatine metabolism in myometrial and decidual tissue. In endometrial samples, AGAT, GAMT, SLC6A8, and CKBB were expressed in glandular and luminal epithelial cells. Except for SLC6A8, the other proteins were also located in stromal cells. Irrespective of fertility, AGAT, GAMT, and SLC6A8 high-intensity immunohistochemical staining was greatest in the early secretory phase of the menstrual cycle. During the proliferative phase, staining for SLC6A8 protein was greater (P = 0.01) in the primary infertile compared with the fertile group. Both layers of the term pregnant uterus contained creatine, phosphocreatine, guanidinoacetic acid, arginine, glycine, and methionine; detectable gene and protein expression of AGAT, GAMT, CKBB, and ubiquitous mitochondrial CK (uMt-CK); and gene expression of SLC6A8. The proteins AGAT, GAMT, CKBB, and SLC6A8 were uniformly distributed in the myometrium and localized to the decidual glands. In conclusion, endometrial tissue has the capacity to produce creatine and its capacity is highest around the time of fertilization and implantation. Both layers of the term pregnant uterus also contained all the enzymatic machinery and substrates of creatine metabolism.


Assuntos
Creatina , Infertilidade Feminina , Gravidez , Feminino , Humanos , Creatina/genética , Creatina/metabolismo , Útero/metabolismo , Ciclo Menstrual , Arginina
7.
J Investig Med High Impact Case Rep ; 11: 23247096231154438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752093

RESUMO

Cerebral creatine deficiency syndromes (CCDS) are a rare group of inherited metabolic disorders (IMDs) that often present with nonspecific findings including global developmental delay (GDD), intellectual disability (ID), seizures, hypotonia, and behavioral differences. Creatine transporter (CRTR) deficiency is the most common CCDS, exhibiting X-linked inheritance and an estimated prevalence as high as 2.6% in individuals with neurodevelopmental disorders. Here, we present a 20-month-old boy with worsening failure to thrive (FTT) and GDD admitted for evaluation. He was found to have persistently low serum creatinine levels and a family history notable for a mother with learning disabilities and a maternal male cousin with GDD. Urine analyses revealed a marked elevation of creatine and elevated creatine:creatinine ratio suggestive of CRTR deficiency. Molecular genetic testing of SLC6A8 identified a maternally inherited hemizygous variant and brain magnetic resonance spectroscopy (MRS) showed diffusely diminished creatine peaks, further supporting the diagnosis of CRTR deficiency. The proband was started on creatine, arginine, and glycine supplementation and has demonstrated improved development. This case highlights that CRTR deficiency should be considered in all patients presenting with FTT and abnormal neurodevelopmental features, particularly if creatinine levels are low on serum chemistry studies. The nonspecific presentation of this condition in males and females likely has resulted in CRTR deficiency being underdiagnosed. There are existing therapies for individuals affected with CRTR deficiency and other CCDS, highlighting the importance of early diagnosis and intervention for affected individuals.


Assuntos
Encefalopatias Metabólicas Congênitas , Deficiência Intelectual , Humanos , Lactente , Masculino , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Creatinina , Insuficiência de Crescimento , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores
8.
Ann Clin Transl Neurol ; 9(10): 1602-1615, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36107781

RESUMO

OBJECTIVE: Sporadic inclusion body myositis (sIBM) is the most common acquired myopathy in patients older than 50 years of age. sIBM is hardly responds to any immunosuppressing theraphies, and its pathophysiology remains elusive. This study aims to explore pathogenic pathways underlying sIBM and identify novel therapeutic targets using metabolomic and transcriptomic analyses. METHODS: In this retrospective observational study, we analyzed biopsied muscle samples from 14 sIBM patients and six non-diseased subjects to identify metabolic profiles. Frozen muscle samples were used to measure metabolites with cation and anion modes of capillary electrophoresis time of flight mass spectrometry. We validated the metabolic pathway altered in muscles of sIBM patients through RNA sequencing and histopathological studies. RESULTS: A total of 198 metabolites were identified. Metabolomic and transcriptomic analyses identified specific metabolite changes in sIBM muscle samples. The pathways of histamine biosynthesis and certain glycosaminoglycan biosynthesis were upregulated in sIBM patients, whereas those of carnitine metabolism and creatine metabolism were downregulated. Histopathological examination showed infiltration of mast cells and deposition of chondroitin sulfate in skeletal muscle samples, supporting the results of metabolomic and transcriptomic analyses. INTERPRETATION: We identified alterations of several metabolic pathways in muscle samples of sIBM patients. These results suggest that mast cells, chondroitin sulfate biosynthesis, carnitine, and creatine play roles in sIBM pathophysiology.


Assuntos
Miosite de Corpos de Inclusão , Carnitina/metabolismo , Sulfatos de Condroitina/metabolismo , Creatina/genética , Creatina/metabolismo , Perfilação da Expressão Gênica , Histamina/metabolismo , Humanos , Metaboloma , Músculo Esquelético , Miosite de Corpos de Inclusão/genética
9.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266867

RESUMO

Glutamine amidotransferase-1 domain-containing AraC-family transcriptional regulators (GATRs) are present in the genomes of many bacteria, including all Pseudomonas species. The involvement of several characterized GATRs in amine-containing compound metabolism has been determined, but the full scope of GATR ligands and regulatory networks are still unknown. Here, we characterize Pseudomonas putida's detection of the animal-derived amine compound creatine, a compound particularly enriched in muscle and ciliated cells by a creatine-specific GATR, PP_3665, here named CahR (Creatine amidohydrolase Regulator). cahR is necessary for transcription of the gene encoding creatinase (PP_3667/creA) in the presence of creatine and is critical for P. putida's ability to utilize creatine as a sole source of nitrogen. The CahR/creatine regulon is small, and an electrophoretic mobility shift assay demonstrates strong and specific CahR binding only at the creA promoter, supporting the conclusion that much of the regulon is dependent on downstream metabolites. Phylogenetic analysis of creA orthologues associated with cahR orthologues highlights a strain distribution and organization supporting probable horizontal gene transfer, particularly evident within the genus Acinetobacter. This study identifies and characterizes the GATR that transcriptionally controls P. putida's metabolism of creatine, broadening the scope of known GATR ligands and suggesting GATR diversification during evolution of metabolism for aliphatic nitrogen compounds.


Assuntos
Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Creatina/genética , Creatina/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Filogenia , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
10.
Brain Dev ; 44(4): 271-280, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974949

RESUMO

INTRODUCTION: Cerebral creatine deficiency syndromes (CCDS) are a group of potentially treatable neurometabolic disorders. The clinical, genetic profile and follow up outcome of Indian CCDS patients is presented. MATERIALS AND METHODS: This was a retrospective cohort of CCDS patients seen over six-years. Diagnosis was based either on low creatine peak on proton magnetic resonance spectroscopy (MRS) and/or genetic evaluation. RESULTS: Thirteen patients were eligible [8 creatine transporter deficiency (CTD), 4 guanidinoacetate methyltransferase (GAMT) deficiency and 1 could not be classified]. The mean (±SD) age at diagnosis was 7.2(±5.0) years. Clinical manifestations included intellectual disability (ID) with significant expressive speech delay in all. Most had significant behavior issues (8/13) and/or autism (8/13). All had history of convulsive seizures (11/13 had epilepsy; 2 patients only had febrile seizures) and 2/13 had movement disorder. Constipation was the commonest non-neurological manifestation (5/13 patients). Cranial MRI was normal in all CTD patients but showed globus pallidus hyperintensity in all four with GAMT deficiency. MRS performed in 11/13 patients, revealed abnormally low creatine peak. A causative genetic variant (novel mutation in nine) was identified in 12 patients. Three GAMT deficiency and one CTD patient reported neurodevelopmental improvement and good seizure control after creatine supplementation. CONCLUSION: Intellectual disability, disproportionate speech delay, autism, and epilepsy, were common in our CCDS patients. A normal structural neuroimaging with easily controlled febrile and/or afebrile seizures differentiated CTD from GAMT deficiency patients who had abnormal neuroimaging and often difficult to control epilepsy and movement disorder.


Assuntos
Encefalopatias Metabólicas Congênitas/diagnóstico , Creatina/deficiência , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Transtornos dos Movimentos/congênito , Transtornos do Neurodesenvolvimento/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Criança , Pré-Escolar , Creatina/genética , Feminino , Seguimentos , Guanidinoacetato N-Metiltransferase/genética , Humanos , Índia , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Retardo Mental Ligado ao Cromossomo X/complicações , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/fisiopatologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Estudos Retrospectivos
11.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324436

RESUMO

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT-/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT-/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT-/y mice. Similarly, CrT-/y neurons and P10 CrT-/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Encéfalo/metabolismo , Creatina/deficiência , DNA/genética , Proteínas de Membrana Transportadoras/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/ultraestrutura , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Homeostase , Masculino , Proteínas de Membrana Transportadoras/deficiência , Retardo Mental Ligado ao Cromossomo X/metabolismo , Retardo Mental Ligado ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
12.
Sci Rep ; 11(1): 1636, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452333

RESUMO

Creatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Animais , Sequência de Bases , Comportamento Animal , Peso Corporal , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Creatina/sangue , Creatina/deficiência , Creatina/genética , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Genótipo , Humanos , Masculino , Memória de Curto Prazo , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Ratos
13.
J Inherit Metab Dis ; 44(4): 939-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33389772

RESUMO

The severe impact on brain function and lack of effective therapy for patients with creatine (Cr) transporter deficiency motivated the generation of three ubiquitous Slc6a8 deficient mice (-/y). While each mouse knock-out line has similar behavioral effects at 2 to 3 months of age, other features critical to the efficient use of these mice in drug discovery are unclear or lacking: the concentration of Cr in brain and heart differ widely between mouse lines, there are limited data on histopathologic changes, and no data on Cr uptake. Here, we determined survival, measured endogenous Cr and uptake of its deuterium-labeled analogue Cr-d3 using a liquid chromatography coupled with tandem mass spectrometry assay, and performed comprehensive histopathologic examination on the Slc6a8-/y mouse developed by Skelton et al. Our results show that Slc6a8-/y mice have widely varying organ-specific uptake of Cr-d3, significantly diminished growth with the exception of brain, progressive vacuolar myopathy, and markedly shortened lifespan.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Encefalopatias Metabólicas Congênitas/patologia , Cromatografia Líquida , Creatina/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Camundongos , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Espectrometria de Massas em Tandem
14.
Gene ; 768: 145260, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33164824

RESUMO

Correct diagnosis of children presenting with developmental delay and intellectual disability remains challenging due to the complex and heterogeneous etiology. High throughput sequencing technologies like exome sequencing have become more commonly available and are significantly improving genetic testing. We present two siblings - a 14-year old male and an 8-year old female patient - with a similar clinical phenotype that was characterized by combined developmental delay primarily affecting speech, mild to moderate intellectual disability, behavioral abnormalities, and autism spectrum disorder, but with no congenital anomalies. The sister showed additional muscular hypotonia and more pronounced dysmorphic features compared to her brother. Both parents had psychiatric disorders and mild to moderate intellectual disability. A common genetic etiology in the siblings was suspected. Metabolic, psychological and neuroradiological examinations were complemented by basic genetic testing including chromosome analysis and array comparative genomics hybridization analysis (CGH), followed by exome sequencing and combined data analysis of the family. Exome sequencing identified two different underlying genetic conditions: in the sister, a maternally inherited pathogenic variant c.1661C > T, p.Pro554Leu in SLC6A8 (NM_005629.4) was identified causing cerebral creatine deficiency syndrome 1 (MIM #300352) which was confirmed by MR spectroscopy and treated accordingly. In the brother, a paternally inherited 16p13.11 duplication was identified by exome sequencing and considered to be likely associated with his and possibly his father's phenotype. The 16p13.11 duplication had been previously identified in an array CGH but had not been prioritized due to the lack of segregation in the siblings. In conclusion, we report a case of intra-familial locus heterogeneity of developmental delay in two siblings. We advocate for the need of unbiased and comprehensive genetic testing to provide accurate diagnosis despite locus heterogeneity.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Encefalopatias Metabólicas Congênitas/genética , Criança , Cromossomos Humanos Par 16/genética , Hibridização Genômica Comparativa , Creatina/deficiência , Creatina/genética , Feminino , Duplicação Gênica/genética , Testes Genéticos , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Hipotonia Muscular/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Irmãos , Sequenciamento do Exoma
15.
BMJ Case Rep ; 13(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334757

RESUMO

X-linked creatine transporter deficiency is caused by the deficiency of the creatine transporter encoded by the SLC6A8 gene on Xq28. We here report a 3-year-old boy with global developmental delay, autism and epilepsy. He had a normal MRI of the brain. Brain magnetic resonance spectroscopy (MRS) subsequently showed an abnormally small creatine peak. His high urine creatine/creatinine ratio further suggested the diagnosis, later confirmed by hemizygous mutation detected in the SLC6A8 gene. His mother was also heterozygous for the same mutation. Supplementation with creatine monohydrate, arginine, and glycine (precursors of creatine) and supportive therapies, resulted in modest clinical improvement after 12 months. This case highlights the importance of doing MRS for boys with global delay/intellectual disability, autism and epilepsy even with a normal MRI of the brain, to pick up a potentially treatable cause.


Assuntos
Transtorno Autístico/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Creatina/deficiência , Epilepsia/genética , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Pré-Escolar , Creatina/análise , Creatina/genética , Creatina/metabolismo , Hemizigoto , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Retardo Mental Ligado ao Cromossomo X/complicações , Retardo Mental Ligado ao Cromossomo X/genética , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
16.
Pediatrics ; 146(5)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093139

RESUMO

Autism spectrum disorder (ASD) is the most common disability-causing neurodevelopmental disorder in childhood. Although inborn errors of metabolism (IEM) are rare causes of ASD, they are significant for several reasons, including implications in genetic counseling and determination of prognosis. In this article, we present a 6-year-old boy who presented to us with ASD and was diagnosed with creatine transporter deficiency. Physical and neurologic examination of this patient had not previously raised suspicion of IEM, but twin pregnancy, prematurity, NICU stay due to necrotizing enterocolitis, transient infantile hypotonia, gross-motor delay, breath-holding spells, and a single febrile seizure complicated the history. MRI revealed mild T2-hyperintensity in posterior periventricular white matter. Further evaluation with magnetic resonance spectroscopy, which showed a decreased creatine peak, led to diagnostic investigations for disorders of creatine metabolism, revealing increased urinary creatine:creatinine ratio and a de novo, novel hemizygous frameshift variant in SLC6A8 Clinicians are advised to maintain a high index of suspicion for IEM and to evaluate patients with ASD for syndromic features. Although current guidelines from relevant organizations differ in their recommendations regarding the necessity and the extent of metabolic screening in ASD, there is a growing trend toward screening for treatable IEM. In this case report, we present challenges and pitfalls in the diagnostic journey for creatine transporter deficiency and underline the significance of a thorough history and physical examination in the evaluation of a child with ASD.


Assuntos
Transtorno do Espectro Autista/genética , Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Doenças em Gêmeos/genética , Mutação da Fase de Leitura , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Criança , Creatina/genética , Creatinina/metabolismo , Doenças em Gêmeos/diagnóstico , Doenças em Gêmeos/tratamento farmacológico , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Masculino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Espectroscopia de Prótons por Ressonância Magnética
17.
Biochemistry ; 59(13): 1367-1377, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207963

RESUMO

More than 80 loss-of-function (LOF) mutations in the SLC6A8 creatine transporter (hCRT1) are responsible for cerebral creatine deficiency syndrome (CCDS), which gives rise to a spectrum of neurological defects, including intellectual disability, epilepsy, and autism spectrum disorder. To gain insight into the nature of the molecular defects caused by these mutations, we quantitatively profiled the cellular processing, trafficking, expression, and function of eight pathogenic CCDS variants in relation to the wild type (WT) and one neutral isoform. All eight CCDS variants exhibit measurable proteostatic deficiencies that likely contribute to the observed LOF. However, the magnitudes of their specific effects on the expression and trafficking of hCRT1 vary considerably, and we find that the LOF associated with two of these variants primarily arises from the disruption of the substrate-binding pocket. In conjunction with an analysis of structural models of the transporter, we use these data to suggest mechanistic classifications for these variants. To evaluate potential avenues for therapeutic intervention, we assessed the sensitivity of these variants to temperature and measured their response to the proteostasis regulator 4-phenylbutyrate (4-PBA). Only one of the tested variants (G132V) is sensitive to temperature, though its response to 4-PBA is negligible. Nevertheless, 4-PBA significantly enhances the activity of WT hCRT1 in HEK293T cells, which suggests it may be worth evaluating as a therapeutic for female intellectual disability patients carrying a single CCDS mutation. Together, these findings reveal that pathogenic SLC6A8 mutations cause a spectrum of molecular defects that should be taken into consideration in future efforts to develop CCDS therapeutics.


Assuntos
Encefalopatias Metabólicas Congênitas/metabolismo , Creatina/deficiência , Retardo Mental Ligado ao Cromossomo X/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Encefalopatias Metabólicas Congênitas/genética , Creatina/genética , Creatina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Fenilbutiratos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
18.
Acta Neurol Belg ; 120(3): 511-516, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31222513

RESUMO

Creatine is the main source of energy for the brain. Primary creatine deficiency syndromes (PCDSs) are inborn error of metabolism of creatine synthesis. Symptoms of central nervous system involvement are the most common clinical manifestations in these disorders. We reviewed medical records of all genetically confirmed patients diagnosed by whole exome sequencing who were referred to Myelin and Neurodegenerative Disorders Clinic, Children's Medical Center, Tehran, Iran, from May 2016 to Dec 2018. A literature review was conducted on clinical and genomic variability of PCDS to compare our patients with previously reported cases. We report two patients with creatine deficiency among a cohort of 550 registered cases out of which 200 patients had a genetically confirmed neurodegenerative disorder diagnosis. The main complain in the first patient with creatine transporter (CRTR) deficiency was seizure and genetic study in this patient identified a novel hemizygote variant of "c.92 > T; p.Pro31Leu" in the first exon of SLC6A8 gene. The second patient with guanidinoacetate methyltransferase (GAMT) deficiency had an unknown motor and speech delay as the striking manifestation and molecular assay revealed a novel homozygote variant of "c.134G > A; p.Trp45*" in the first exon of GAMT gene. PCDSs usually are associated with nonspecific neurologic symptoms. The first presented case had a mean delayed diagnosis of 5 years. Therefore, in children with unexplained neurologic features including developmental delay and/or regression, mental disability and repeated seizures without any significant findings in metabolic studies, PCDSs can be considered as a differential diagnosis and molecular analysis can be helpful for the precise diagnosis and treatment.


Assuntos
Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Transtornos dos Movimentos/congênito , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Criança , Pré-Escolar , Creatina/genética , Diagnóstico Tardio , Deficiências do Desenvolvimento/genética , Guanidinoacetato N-Metiltransferase/genética , Humanos , Masculino , Diagnóstico Ausente , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Linhagem , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Convulsões/genética
19.
J Mol Neurosci ; 70(1): 102-111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520365

RESUMO

The lack of cerebral creatine (Cr) causes intellectual disability and epilepsy. In addition, a significant portion of individuals with Cr transporter (Crt) deficiency (CTD), the leading cause of cerebral Cr deficiency syndromes (CCDS), are diagnosed with attention-deficit hyperactivity disorder. While the neurological effects of CTD are clear, the mechanisms that underlie these deficits are unknown. Part of this is due to the heterogenous nature of the brain and the unique metabolic demands of specific neuronal systems. Of particular interest related to Cr physiology are dopaminergic neurons, as many CCDS patients have ADHD and Cr has been implicated in dopamine-associated neurodegenerative disorders, such as Parkinson's and Huntington's diseases. The purpose of this study was to examine the effect of a loss of the Slc6a8 (Crt) gene in dopamine transporter (Slc6a3; DAT) expressing cells on locomotor activity and motor function as the mice age. Floxed Slc6a8 (Slc6a8flox) mice were mated to DATIREScre expressing mice to generate DAT-specific Slc6a8 knockouts (dCrt-/y). Locomotor activity, spontaneous activity, and performance in the challenging beam test were evaluated monthly in dCrt-/y and control (Slc6a8flox) mice from 3 to 12 months of age. dCrt-/y mice were hyperactive compared with controls throughout testing. In addition, dCrt-/y mice showed increased rearing and hindlimb steps in the spontaneous activity test. Latency to cross the narrow bridge was increased in dCrt-/y mice while foot slips were unchanged. Taken together, these data suggest that the lack of Cr in dopaminergic neurons causes hyperactivity while sparing motor function.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Neurônios Dopaminérgicos/metabolismo , Locomoção , Proteínas de Membrana Transportadoras/genética , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Encefalopatias Metabólicas Congênitas/fisiopatologia , Creatina/genética , Deleção de Genes , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Retardo Mental Ligado ao Cromossomo X/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
20.
Yakugaku Zasshi ; 139(4): 497-503, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-30930376

RESUMO

Tissue barriers contribute to the maintenance of homeostasis in the body, and tissue barrier dysfunction presents a risk factor for a variety of diseases. The blood-brain barrier (BBB) is a major tissue barrier acting as a static barrier and dynamic interface that plays an important role in the maintenance of central nervous system homeostasis. We show the functional characterization of the brain-to-blood efflux transport system of amyloid-ß peptide (Aß) across the BBB. We found that activated vitamin D3 may be a candidate agent for modulating the Aß clearance across the BBB. Cerebral creatine deficiency syndromes are caused by loss-of-function mutations in the creatine transporter (CRT; SLC6A8), which transports creatine at the BBB. We found that functional impairment of CRT due to a G561R mutation resulted in incomplete N-linked glycosylation due to misfolding during protein maturation, leading to impaired creatine transport activity at the BBB. To develop a delivery system for biomedicine across the tissue barrier, we established a screening system to identify cell-penetrating peptides by a combination of in vitro cell permeability screening assays and phage display technology. Using this system, we identified cyclic hepta-peptides that are able to facilitate intestinal absorption of phages in vitro and in vivo, which are promising candidates as a carrier for macromolecular biomedicines. In conclusion, these studies focusing on the dynamic interface of tissue barriers will contribute to knowledge on disease pathogenesis as well as the development of a targeted biomedicine delivery system.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encefalopatias Metabólicas Congênitas/etiologia , Encefalopatias Metabólicas Congênitas/genética , Colecalciferol/farmacologia , Creatina/deficiência , Creatina/genética , Glicosilação , Humanos , Mutação com Perda de Função , Proteínas de Membrana Transportadoras/genética , Retardo Mental Ligado ao Cromossomo X/etiologia , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...